Below you can find the full step by step solution for you problem. We hope it will be very helpful for you and it will help you to understand the solving process.
(60*e^(-4.8*x)*sin(16*x))'The calculation above is a derivative of the function f (x)
(60*e^(-4.8*x))'*sin(16*x)+60*e^(-4.8*x)*(sin(16*x))'
((60)'*e^(-4.8*x)+60*(e^(-4.8*x))')*sin(16*x)+60*e^(-4.8*x)*(sin(16*x))'
(0*e^(-4.8*x)+60*(e^(-4.8*x))')*sin(16*x)+60*e^(-4.8*x)*(sin(16*x))'
(0*e^(-4.8*x)+60*e^(-4.8*x)*((-4.8*x)'*ln(e)+(-4.8*x*(e)')/e))*sin(16*x)+60*e^(-4.8*x)*(sin(16*x))'
(0*e^(-4.8*x)+60*e^(-4.8*x)*((-4.8*x)'*ln(e)+(-4.8*x*0)/e))*sin(16*x)+60*e^(-4.8*x)*(sin(16*x))'
(0*e^(-4.8*x)+60*e^(-4.8*x)*(((-4.8)'*x-4.8*(x)')*ln(e)+(-4.8*x*0)/e))*sin(16*x)+60*e^(-4.8*x)*(sin(16*x))'
(0*e^(-4.8*x)+60*e^(-4.8*x)*((0*x-4.8*(x)')*ln(e)+(-4.8*x*0)/e))*sin(16*x)+60*e^(-4.8*x)*(sin(16*x))'
(0*e^(-4.8*x)+60*e^(-4.8*x)*((0*x-4.8*1)*ln(e)+(-4.8*x*0)/e))*sin(16*x)+60*e^(-4.8*x)*(sin(16*x))'
(0*e^(-4.8*x)+60*e^(-4.8*x)*((-4.8*x*0)/e-4.8*ln(e)))*sin(16*x)+60*e^(-4.8*x)*(sin(16*x))'
(0*e^(-4.8*x)+60*e^((-4.8)'*x-4.8*(x)'))*sin(16*x)+60*e^(-4.8*x)*(sin(16*x))'
(0*e^(-4.8*x)+60*e^(0*x-4.8*(x)'))*sin(16*x)+60*e^(-4.8*x)*(sin(16*x))'
(0*e^(-4.8*x)+60*e^(0*x-4.8*1))*sin(16*x)+60*e^(-4.8*x)*(sin(16*x))'
(0*e^(-4.8*x)+60*0^(-4.8*x))*sin(16*x)+60*e^(-4.8*x)*(sin(16*x))'
(0*e^(-4.8*x)+60*-4.8*e^(-4.8*x))*sin(16*x)+60*e^(-4.8*x)*(sin(16*x))'
60*e^(-4.8*x)*(sin(16*x))'-288*e^(-4.8*x)*sin(16*x)
60*e^(-4.8*x)*cos(16*x)*(16*x)'-288*e^(-4.8*x)*sin(16*x)
60*e^(-4.8*x)*cos(16*x)*((16)'*x+16*(x)')-288*e^(-4.8*x)*sin(16*x)
60*e^(-4.8*x)*cos(16*x)*(0*x+16*(x)')-288*e^(-4.8*x)*sin(16*x)
60*e^(-4.8*x)*cos(16*x)*(0*x+16*1)-288*e^(-4.8*x)*sin(16*x)
60*e^(-4.8*x)*16*cos(16*x)-288*e^(-4.8*x)*sin(16*x)
960*e^(-4.8*x)*cos(16*x)-(288*e^(-4.8*x)*sin(16*x))
| Derivative of e^(4.8x) | | Derivative of 2(e^(x)) | | Derivative of Ln(2(sin(x/2))) | | Derivative of cos(1-2x)^0.5 | | Derivative of x^4-6x^2 | | Derivative of 67x^3 | | Derivative of -1-13 | | Derivative of (3m^2)^3(2m^2)^3 | | Derivative of (3/x) | | Derivative of 2e^0.5 | | Derivative of X^3tan(x) | | Derivative of sin(8*x) | | Derivative of 9x/y | | Derivative of ln(x-9.1x^-1) | | Derivative of ln(x-3.1x^-1) | | Derivative of 60e0.1x | | Derivative of 4t^(-3/8) | | Derivative of x^2(78-4x) | | Derivative of x^4-2x-615 | | Derivative of 3x^3-5x^2-2 | | Derivative of 4x^3-7x^2-6 | | Derivative of x^8e^7x | | Derivative of (e^4x)/x^8 | | Derivative of x^5-6e^4x | | Derivative of (sin(7x))^4 | | Derivative of 4ln(5) | | Derivative of -3*sin(3x) | | Derivative of 36x^3*(x^4-2)^8 | | Derivative of (x^4-2)^9 | | Derivative of (ln(2x))^1/2 | | Derivative of 600/x | | Derivative of x^2/3*(x^2-4) |